An Exercise concerning the Selfdual Cusp Forms on Gl(3)
نویسنده
چکیده
The form π is unique up to a character twist, while ν is simply the central character of Π. The central character ω of π may be chosen to be of finite order. Moreover, we may choose π such that, for any finite place v, πv is unramified, resp. Steinberg, when Πv ⊗ νv is unramified, resp. Steinberg. Here Ad(π) denotes the Adjoint of π, a selfdual automorphic form on GL(3)/F , defined to be sym2(π) ⊗ ω−1, where sym2(π) is the symmetric square of π, defined by Gelbart and Jacquet in [GJ]. As π is non-dihedral, Ad(π) is cuspidal.
منابع مشابه
A Cuspidality Criterion for the Functorial Product on Gl(2)×gl(3), with a Cohomological Application
A strong impetus for this paper came, at least for the first author, from a question of Avner Ash, asking whether one can construct non-selfdual, nonmonomial cuspidal cohomology classes for suitable congruence subgroups Γ of SL(n,Z), say for n = 6. Such a construction, in special examples, has been known for some time for n = 3 ([AGG1984], [vGT1994], [vGKTV1997], [vGT2000]); it is of course not...
متن کاملAn C a 4 Extension of Q Attached to a Non-selfdual Automorphic Form on Gl(3)
Conjectures concerning the relations between motives and automorphic representations of GL(n) over number elds have been made by Clozel C1]. They make precise part of the programme indicated by Langlands in La]. Once a motive is attached to an automorphic representation, one can derive a compatible series of-adic representations of Gal(Q=Q) attached to it in the usual way. In C2], Clozel has gi...
متن کامل2 00 4 Moments of L - functions , periods of cusp forms , and cancellation in additively twisted sums on GL ( n ) Stephen
In a previous paper with Schmid ([29]) we considered the regularity of automorphic distributions for GL(2,R), and its connections to other topics in number theory and analysis. In this paper we turn to the higher rank setting, establishing the nontrivial bound ∑ n≤T an e 2π i nα = Oε(T 3/4+ε), uniformly in α ∈ R, for an the coefficients of the L-function of a cusp form on GL(3,Z)\GL(3,R). We al...
متن کاملJ ul 2 00 4 Moments of L - functions , periods of cusp forms , and cancellation in additively twisted sums on GL ( n )
In a previous paper with Schmid [29] we considered the regularity of automorphic distributions for GL(2,R), and its connections to other topics in number theory and analysis. In this paper we turn to the higher rank setting, establishing the nontrivial bound ∑ n≤T an e 2π i nα = Oε(T 3/4+ε), uniformly in α ∈ R, for an the coefficients of the L-function of a cusp form on GL(3,Z)\GL(3,R). We also...
متن کاملA Cuspidality Criterion for the Functorial Product on GL(2) times GL (3), with a Cohomological Application
A strong impetus for this paper came, at least for the first author, from a question of Avner Ash, asking whether one can construct non-self-dual, nonmonomial cuspidal cohomology classes for suitable congruence subgroups Γ of SL(n,Z), say for n = 6. Such a construction, in special examples, has been known for some time for n = 3 (see [2, 34, 35, 36]); it is of course not possible for n = 2. One...
متن کامل